((x^2)-x)/2=36

Simple and best practice solution for ((x^2)-x)/2=36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((x^2)-x)/2=36 equation:



((x^2)-x)/2=36
We move all terms to the left:
((x^2)-x)/2-(36)=0
We multiply all the terms by the denominator
(x^2-x)-36*2=0
We add all the numbers together, and all the variables
(x^2-x)-72=0
We get rid of parentheses
x^2-x-72=0
We add all the numbers together, and all the variables
x^2-1x-72=0
a = 1; b = -1; c = -72;
Δ = b2-4ac
Δ = -12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-17}{2*1}=\frac{-16}{2} =-8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+17}{2*1}=\frac{18}{2} =9 $

See similar equations:

| 16-7v=-3v-8v | | 7x+4=17-2 | | 36=((x^2)-x)/2 | | t^2-4t+4=1/4 | | 3y2+7y-20=0 | | 3y2+-7y+-20=0 | | -18x+3x^2+4=0 | | 6x^2-3=-11x | | 0.2(x+50)-0.08(x-60)=10 | | 6)9-5x=6-6x | | (4/2x+1)+(1/4x2)=3 | | 3+2x4+1=13 | | -2(x+2)-7(x-4)=-5x-x | | 3x/2=5/3+7x/2 | | 11-6n=65 | | X/7=x/6-4 | | 5636944672+78/583769x=589 | | 18x=5x^2 | | 6x^2-3=11x | | t^2-2t+1=1/4 | | 2^x-5^x=20 | | 5r-1=8r+8 | | 46^x=4^21 | | 3^4x+5-1^2x=3 | | (x-1)/4x=2 | | 5t+7=4t–9 | | 12x+8+6=4x+9 | | 7x+10=4+8x | | 7x+10=4x+8x | | 15x+10=4x+8 | | 9x+18=4x+8 | | 4x+18=8x+2 |

Equations solver categories